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(some) issues in the High-dimensional setting...

what is the deal with having too much data?

Overfitting

Estimation precision

Computational complexity

Interpretability
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We can find these issues in several applications

Genetic Data

Spectral Data (Chemometrics)

Health records, e.g.

electrocardiograms
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(some) solution to these problems...

How can we tackle these issues?

Dimension reduction methods (e.g. PCA)

Regularisation (e.g. LASSO)

Variable selection
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Focus on variable selection...

Select isolated
variables

find models with good prediction power,

estimate the true ”sparsity pattern”.
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... but adding some restrictions: Domain Selection

Domain (interval)
selection

Select set of variables (intervals).

Take advantage of the covariance structure.

Variables are recorded almost continuously.
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Motivation
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Objective: Domain Selection

For a pair of random processes, what is the region (domain) where they
statistically differ the most?

Inference:
Characterise and quantify the uncertainty around the estimation of the
domain bounds.

Improve the power of a hypothesis test, i.e: two-sample test.

Prediction: improve a classification model outcome, i.e: the
misclassification error rate.

Computational burden: reduce time and memory storage in the big
data context. Future collection Strategy.
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Domain Selection: How?

compute differences with a local approach

Kullback-Leibler divergence

Let P and Q be two distributions of a continuous random variable x .
Then the KL is:

KL(P||Q) =

∫ ∞

−∞
p(x)log(

p(x)

q(x)
)dx
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Learning problem and local features

Let X (t) ∼ GP(µX (t), σX (t, s)) be a GP indexed on the compact
set T ⊂ R, with:

µX (t) = E{X (t)} and σX (t, s) = E{(X (t)− µX (t))(X (s)− µX (s))}.
Likewise for Y (t)

Learn the interval where X (t) and Y (t) statistically differ the most.

Estimate a compact subset A ⊂ T with λ(A) > 0:

(A) Differences in Mean. t ∈ A: |µX (t)− µY (t)| > ν, and
t ′ /∈ A : |µX (t

′)− µY (t
′)| ≤ ν.

Differences in Variance. (t, s) ∈ A× A: |σX (t, s)− σY (t, s)| > ν,
and (t ′, s ′) /∈ A× A : |σX (t

′, s ′)− σY (t
′, s ′)| ≤ ν.

(A) and (B) simultaneously, possibly on different subsets Aµ and Aσ

and for different νµ and νσ.
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The KL divergence in the GP context

In practice GP data is recorded over a finite grid T = (t1, . . . , tp).

In this case it corresponds to realisations of p-variate Gaussian
random vectors and the KL has the following closed form:

KLT (X||Y) ≡
1

2

(
tr
(
Σ−1

T ,YΣT ,X − Ip
)
+∆T

T Σ
−1
T ,Y∆T + ln

(
detΣT ,Y

detΣT ,X

))
,

where:

∆T =
(
µT ,Y − µT ,X

)
,

tr(Σ) denote the trace of Σ, and

det(Σ) the determinant of Σ.
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Domain Selection using the local-KL divergence

For any subset A ⊆ T , we can also define the local–KL divergence as
follows:

KLA(X ||Y ) ≡ 1

2

(
tr
(
Σ−1

A,YΣA,X − I|A|

)
+∆T

AΣ
−1
A,Y∆A + ln

(
detΣA,Y

detΣA,X

))
,

Consider A ∈ CT , collection of all contiguous subsets from T

A∗(c)A∗(c)A∗(c), with c ∈ (0, 1), is the domain with maximum divergence

max
A∈CT

KLA(X ||Y ), s.t. len(A) ≤ cλ(T ).
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Local-KL Divergence properties

The KLA(X ||Y ) is a set function that satisfies the following properties:

(a) Non-negative: For fixed GPs X and Y , it holds:
KLA(X ||Y ) : PT → R+

0 and KLA(X ||Y ) = 0 if and only if
µX (t) = µY (t) for all t ∈ A and σX (t, s) = σY (t, s) for all
(t, s) ∈ A×A.

(b) The local KL divergence is upper bounded (i.e. KLT (X ||Y ) < ∞)
and a monotone set function (i.e. for A′ ⊆ A it holds:
KLA′(X ||Y ) ≤ KLA(X ||Y ))

(c) The local divergence KLA(X ||Y ) is a continuous set function in CT ,
the collection of all contiguous subsets from the ground set T .

Properties + PT is finite ⇒ A∗(c) exists.
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Local-KL divergence estimation

Samples recorded over the same discrete grid T : DX = {xi}ni=1 and
DY = {yj}mj=1 drawn from GP(µX (t), σX (t, s)) and
GP(µY (t), σY (t, s)).

The Maximum Likelihood estimates are given by:

µ̂T ,X =
1

n

n∑
i=1

xi ; Σ̂T ,X =
1

n

n∑
i=1

(xi − µ̂T ,X )(xi − µ̂T ,X )
T ,

(analogous expression holds for µT ,Y ,ΣT ,Y ).

The trace and determinant are continuous functions in the space of
real symmetric matrices, then K̂LA(X ||Y ) inherits (fixed p),
consistency, asymptotic normality and efficiency,
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Some notes on the estimation...

Symmetrised KL divergence:
KL(X ||Y ) + KL(Y ||X )

2

Regularised covariance matrix:
Σ̂η = η Σ̂+ (1− η) diag(Σ̂), for η ∈ [0, 1].

Sampling designs and misalignment: data asynchrony may act as a
confounding factor when the aim is the estimation of the interval of
local maximum KL divergence

Smoothing: low signal to noise ratio leading to problems in the
estimation of the interval of local maximum KL divergence
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One-shot experiment
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Figure: One shot experiment: Lower panels show the estimated local KL divergence for
different interval lengths: c = 0.1 ( ) and c = 0.2 ( )
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Monte Carlo experiment

MC replicates = 1000

Sample size: n = {50, 100, 500, 1000}.

Grid points: p = {50, 100, 200, 500}.

c possible lengths: (1%− 99%).

Av. Jaccard Distance: AJD = E

{∫ 1

0

[
1− |A∗(c) ∩ Â∗(c)|

|A∗(c) ∪ Â∗(c)|

]
dc

}
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Monte Carlo results
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Figure: Empirical distribution of AIJD for different sample sizes n, m and grid resolution levels
p.
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Computational complexity
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Figure: Average computational time required to estimate intervals of local maximum
divergence.
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Monitoring Electrocardiogram signals
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Figure: Left: ECG signals and selected domain for interval lengths 10, 19 and 24 dcs. Right:
Bootstrap densities for the interval centre (same lengths)
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ECG Classification

Figure: Estimated centre and classification error using a Discriminant model for different
selected domains.

UCL Nicolás Hernández Oct. 26th, 2023 33 / 36



Summary and future work

✓ Tackle the problem of domain selection for electrocardiogram
signals.

✓ Parameter of interest: interval ⇒ Covariance structure + almost
continuously recorded data.

✓ Use the KL divergence and GP to develop an easy to implement
algorithm for domain selection.

✓ Propose an estimator for A∗(c), and a nonparametric approach to
assess the estimation uncertainty

⇒ Consider other model frameworks (non Gaussian), e.g.:
Wasserstein divergence.
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Thank you for listening! Comments are very

welcome.

(flash for arXiv pre-print)


