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(some) issues in the High-dimensional setting...

what is the deal with having too much data? )
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(some) issues in the High-dimensional setting...
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(some) issues in the High-dimensional setting...
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(some) issues in the High-dimensional setting...

what is the deal with having too much data? |

o Interpretability
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We can find these issues in several applications

B L » Genetic Data

MﬂMHgMMI

» Spectral Data (Chemometrics)

Health records, e.g.
electrocardiograms
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(some) solution to these problems...

How can we tackle these issues? |

@ Dimension reduction methods (e.g. PCA)
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(some) solution to these issues...

How can we tackle these issues? |

e Regularisation (e.g. LASSO)
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(some) solution to these issues...

How can we tackle these issues? |

@ Variable selection
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Focus on variable selection...
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o find models with good prediction power,

@ estimate the true "sparsity pattern”.
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but adding some restrictions: Domain Selection
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@ Select set of variables (intervals).

@ Take advantage of the covariance structure.
@ Variables are recorded almost continuously.
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Electrocardiogram signal
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Objective: Domain Selection

For a pair of random processes, what is the region (domain) where they
statistically differ the most? J
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o Inference:

o Characterise and quantify the uncertainty around the estimation of the
domain bounds.

e Improve the power of a hypothesis test, i.e: two-sample test.
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Objective: Domain Selection

For a pair of random processes, what is the region (domain) where they
statistically differ the most? J

o Inference:
o Characterise and quantify the uncertainty around the estimation of the
domain bounds.

e Improve the power of a hypothesis test, i.e: two-sample test.

@ Prediction: improve a classification model outcome, i.e: the
misclassification error rate.

o Computational burden: reduce time and memory storage in the big
data context. Future collection Strategy.
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Domain Selection: How?

compute differences with a local approach |

¥

Kullback-Leibler divergence J

\ 4

Let P and @ be two distributions of a continuous random variable x.
Then the KL is:

KL(PlQ) = [ p(x)/og(%wx J
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Domain Selection: How?

compute differences with a local approach J

¥

Kullback-Leibler divergence + Gaussian framework J
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Domain Selection: How?

compute differences with a local approach J
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Kullback-Leibler divergence + Gaussian framework |
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Domain Selection: How?

compute differences with a local approach J
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Kullback-Leibler divergence + Gaussian framework J
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Domain Selection: How?

compute differences with a local approach J

\ 4

Kullback-Leibler divergence + Gaussian framework J

¥
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Y Y X

UcCL Nicolds Hernandez Oct. 26th, 2023 19 /36



Learning problem and local features

o Let X(t) ~ GP(ux(t),ox(t,s)) be a GP indexed on the compact
set T C R, with:

o px(t) = E{X(t)} and ox(t,s) = E{(X(t) — px(£))(X(s) — px(s))}-
o Likewise for Y(t)

Learn the interval where X(t) and Y (t) statistically differ the most. )
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(A) Differences in Mean. t € A: |ux(t) — py(t)] > v, and
t' ¢ A ux(t) — py(t) <v.

UcCL Nicolds Hernandez Oct. 26th, 2023 20/36



Learning problem and local features

o Let X(t) ~ GP(ux(t),ox(t,s)) be a GP indexed on the compact set
T C R, with:
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Learning problem and local features

o Let X(t) ~ GP(ux(t),ox(t,s)) be a GP indexed on the compact set
T C R, with:

o px(t) = E{X(t)} and ox(t,s) = E{(X(t) — px(£))(X(s) — px(s))}-
o Likewise for Y(t)

Learn the interval where X(t) and Y (t) statistically differ the most. )

e Estimate a compact subset A C T with A(A) > 0:

(A) Differences in Mean. t € A: |ux(t) — uy(t)] > v, and
£ ¢ A ux(t) — py(¢) < v.

(B) Differences in Variance. (t,s) € A x A: |ox(t,s) —oy(t,s)| > v,
and (t',s') ¢ Ax A |ox(t',s') —oy(t,s') <wv.

(C) (A) and (B) simultaneously, possibly on different subsets A, and A,
and for different v, and v,.

UcCL Nicolds Hernandez Oct. 26th, 2023 22/36



The KL divergence in the GP context

o In practice GP data is recorded over a finite grid 7 = (t1,. .., tp).

@ In this case it corresponds to realisations of p-variate Gaussian
random vectors and the KL has the following closed form:

1 _ _ detX
KLr(X|[Y) = 3 (tr ():T}YXT,X - l,,) +ATEFL Ar +1n (det}:;;» ,

where:

° At = (Bry — BT .x):
@ tr(X) denote the trace of X, and

@ det(X) the determinant of X.
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Domain Selection using the local-KL divergence

@ For any subset A C T, we can also define the local-KL divergence as
follows:

1 - 3 detX 4y
KLAX|]Y) = 5 (tr (ZA}YZA,X - '|,4|> +ALE A+ n (detzM))

@ Consider A € Cr, collection of all contiguous subsets from T
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Domain Selection using the local-KL divergence

@ For any subset A C T, we can also define the local-KL divergence as
follows:

1 - 3 detX 4y
KLAX|]Y) = 5 (tr (zA}yZA,x - '|,4|) +ALE A+ n (detzM))

@ Consider A € Cr, collection of all contiguous subsets from T

e A*(c), with c € (0,1), is the domain with maximum divergence

max KL4(X]]Y), s.t. len(A) < cA(T).
AeCr
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Local-KL Divergence properties

The KL4(X||Y) is a set function that satisfies the following properties:

(a) Non-negative: For fixed GPs X and Y/, it holds:
KLA(X|Y) : P — R§ and KL4(X]||Y) =0 if and only if
px(t) = py(t) for all t € A and ox(t,s) = oy(t,s) for all
(t,s) e Ax A

Nicolds Hernandez Oct. 26th, 2023



Local-KL Divergence properties

The KL4(X||Y) is a set function that satisfies the following properties:

(a) Non-negative: For fixed GPs X and Y/, it holds:
KLA(X|Y) : P — R§ and KL4(X]||Y) =0 if and only if
px(t) = py(t) forall t € A and ox(t,s) = oy(t,s) for all
(t,s) e Ax A

(b) The local KL divergence is upper bounded (i.e. KL7(X]|]Y) < o0)
and a monotone set function (i.e. for A" C A it holds:
KL (X[]Y) < KLa(X]]Y))

UcCL Nicolds Hernandez Oct. 26th, 2023 25 /36



Local-KL Divergence properties

The KL4(X||Y) is a set function that satisfies the following properties:

(a) Non-negative: For fixed GPs X and Y/, it holds:
KLA(X|Y) : P — R§ and KL4(X]||Y) =0 if and only if
px(t) = py(t) forall t € A and ox(t,s) = oy(t,s) for all
(t,s) e Ax A

(b) The local KL divergence is upper bounded (i.e. KL7(X]|]Y) < o0)
and a monotone set function (i.e. for A" C A it holds:
KL (X[]Y) < KLa(X]]Y))

(c) The local divergence KL 4(X||Y) is a continuous set function in Cr,
the collection of all contiguous subsets from the ground set 7.

Properties + P is finite = A*(c) exists. |
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Local-KL divergence estimation

@ Samples recorded over the same discrete grid 7: Dx = {x;}7_; and
Dy = {y;}j2; drawn from GP(ux(t),ox(t,s)) and
GP(MY(t)v UY(tv 5))
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Local-KL divergence estimation

@ Samples recorded over the same discrete grid 7: Dx = {x;}7_; and
Dy = {y;}j2; drawn from GP(ux(t),ox(t,s)) and
GP(MY(t)v UY(tv 5))

@ The Maximum Likelihood estimates are given by:
A 1 < 1< R S
Prx =" > oxii Trx ==Y (xi—drx)xi—brx)

: n-
=1 =1

(analogous expression holds for pr v, X7 y).
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Local-KL divergence estimation

@ Samples recorded over the same discrete grid 7: Dx = {x;}7_; and
Dy = {y;}j2; drawn from GP(ux(t),ox(t,s)) and
GP(MY(t)v UY(tv 5))
@ The Maximum Likelihood estimates are given by:
R 1 n R 1 n ~ R .
Prx =" doxii Erx=—> (x—brx)xi—Brx)’

: n-
=1 =1

(analogous expression holds for pr v, X7 y).

@ The trace and determinant are continuous functions in the space of
real symmetric matrices, then KL 4(X||Y') inherits (fixed p),
consistency, asymptotic normality and efficiency,
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Some notes on the estimation...

KL(X]|Y) + KL(Y||X)
2

o Symmetrised KL divergence:
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Some notes on the estimation...

KL(X||Y) + KL(Y]|X)

o Symmetrised KL divergence: >

o Regularised covariance matrix:
):77 = nX + (1 —n)diag(X), forn € [0,1].

@ Sampling designs and misalignment: data asynchrony may act as a
confounding factor when the aim is the estimation of the interval of
local maximum KL divergence

@ Smoothing: low signal to noise ratio leading to problems in the
estimation of the interval of local maximum KL divergence
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One-shot experiment

X(t) and Y(t)

Iy e
=) 3l

Estimated KL
o
o

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Grid points Grid points Grid points

Figu re: One shot experiment: Lower panels show the estimated local KL divergence for
different interval lengths: ¢ = 0.1 (-----) and ¢ = 0.2 (—)
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Monte Carlo experiment

@ MC replicates = 1000

Sample size: n = {50,100, 500, 1000}.

Grid points: p = {50, 100,200, 500}.

¢ possible lengths: (1% — 99%).

1 * n
@ Av. Jaccard Distance: AJD = E / [1 — A*(c) ﬂ.{l\ (C)|]dc
0 |A*(c) U A*(c)|
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Monte Carlo results
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Figure: Empirical distribution of AIJD for different sample sizes n, m and grid resolution levels
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Computational complexity
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Figure: Average computational time required to estimate intervals of local maximum
divergence.

Nicolds Hernandez



Monitoring Electrocardiogram signals
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Figure: Left: ECG signals and selected domain for interval lengths 10,19 and 24 dcs. Right:
Bootstrap densities for the interval centre (same lengths)
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ECG Classification
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Figure: Estimated centre and classification error using a Discriminant model for different
selected domains.
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Summary and future work

V" Tackle the problem of domain selection for electrocardiogram
signals.
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Summary and future work

V" Tackle the problem of domain selection for electrocardiogram
signals.

V" Parameter of interest: interval = Covariance structure + almost
continuously recorded data.

V" Use the KL divergence and GP to develop an easy to implement
algorithm for domain selection.

V" Propose an estimator for A*(c), and a nonparametric approach to
assess the estimation uncertainty

= Consider other model frameworks (non Gaussian), e.g.:
Wasserstein divergence.
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Thank you for listening! Comments are very

welcome.
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(flash for arXiv pre-print)




